In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament.

نویسندگان

  • Samantha P Harris
  • Ross G Lyons
  • Kristina L Bezold
چکیده

In the 20 years since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM), an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins, including the myosin essential and regulatory light chains and cardiac myosin binding protein (cMyBP)-C. However, despite the frequency with which myosin binding proteins, especially cMyBP-C, have been linked to inherited cardiomyopathies, the functional consequences of mutations in these proteins and the mechanisms by which they cause disease are still only partly understood. The purpose of this review is to summarize the known disease-causing mutations that affect the major thick filament binding proteins and to relate these mutations to protein function. Conclusions emphasize the impact that discovery of HCM-causing mutations has had on fueling insights into the basic biology of thick filament proteins and reinforce the idea that myosin binding proteins are dynamic regulators of the activation state of the thick filament that contribute to the speed and force of myosin-driven muscle contraction. Additional work is still needed to determine the mechanisms by which individual mutations induce hypertrophic phenotypes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HCM-Causing Mutations in Myosin Binding Proteins of the Thick Filament

In the 20 years since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM), an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins, including the myosin essential and regulatory light chains and cardiac myosin binding protein (cM...

متن کامل

Mutations of the light meromyosin domain of the beta-myosin heavy chain rod in hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (HCM) is caused by mutations in 9 sarcomeric protein genes. The most commonly affected is beta-myosin heavy chain (MYH7), where missense mutations cluster in the head and neck regions and directly affect motor function. Comparable mutations have not been described in the light meromyosin (LMM) region of the myosin rod, nor would these be expected to directly...

متن کامل

Identification of novel interactions between domains of Myosin binding protein-C that are modulated by hypertrophic cardiomyopathy missense mutations.

Cardiac myosin binding protein-C (cMyBPC) is a modular protein consisting of 11 domains whose precise function and sarcomeric arrangement are incompletely understood. Identification of hypertrophic cardiomyopathy (HCM)--causing missense mutations in cMyBPC has highlighted the significance of certain domains. Of particular interest is domain C5, an immunoglobulin-like domain with a cardiac-speci...

متن کامل

Structural characterization of the C3 domain of cardiac myosin binding protein C and its hypertrophic cardiomyopathy-related R502W mutant.

Human cardiac myosin binding protein C (cMyBP-C), a thick filament protein found within the sarcomere of cardiac muscle, regulates muscle contraction and is essential for proper muscle function. Hypertrophic cardiomyopathy (HCM), a genetic disease affecting 1 in 500 people, is the major cause of death in young athletes. It is caused by genetic mutations within sarcomeric proteins. Forty-two per...

متن کامل

The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization

Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 108 6  شماره 

صفحات  -

تاریخ انتشار 2011